首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2803篇
  免费   275篇
  国内免费   190篇
  2023年   67篇
  2022年   93篇
  2021年   66篇
  2020年   77篇
  2019年   100篇
  2018年   118篇
  2017年   95篇
  2016年   75篇
  2015年   68篇
  2014年   227篇
  2013年   220篇
  2012年   157篇
  2011年   187篇
  2010年   143篇
  2009年   149篇
  2008年   161篇
  2007年   193篇
  2006年   109篇
  2005年   91篇
  2004年   63篇
  2003年   52篇
  2002年   35篇
  2001年   21篇
  2000年   27篇
  1999年   34篇
  1998年   25篇
  1997年   20篇
  1996年   25篇
  1995年   26篇
  1994年   28篇
  1993年   33篇
  1992年   23篇
  1991年   20篇
  1990年   15篇
  1989年   16篇
  1988年   16篇
  1987年   16篇
  1986年   12篇
  1985年   24篇
  1984年   42篇
  1983年   31篇
  1982年   34篇
  1981年   28篇
  1980年   39篇
  1979年   35篇
  1978年   21篇
  1977年   25篇
  1976年   16篇
  1974年   22篇
  1973年   19篇
排序方式: 共有3268条查询结果,搜索用时 78 毫秒
91.
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
Highlights
  • •Developed a data processing pipeline to format phosphopeptide identifications.
  • •Identified the preferred substrate motif for FLT3 and mutant kinases.
  • •Designed and validated a panel of pan-FTL3 artificial substrates.
  • •Monitored FLT3 and mutant kinase activity through FAStide phosphorylation.
  相似文献   
92.
Phosphoinositide 3‐kinase gamma (PI3Kγ) draws an increasing attention due to its link with deadly cancer, chronic inflammation and allergy. But the development of PI3Kγ selective inhibitors is still a challenging endeavor because of the high sequence homology with the other PI3K isoforms. In order to acquire valuable information about the interaction mechanism between potent inhibitors and PI3Kγ, a series of PI3Kγ isoform‐selective inhibitors were analyzed by a systematic computational method, combining 3D‐QSAR, molecular docking, molecular dynamic (MD) simulations, free energy calculations and decomposition. The general structure–activity relationships were revealed and some key residues relating to selectivity and high activity were highlighted. It provides precious guidance for rational virtual screening, modification and design of selective PI3Kγ inhibitors. Finally, ten novel inhibitors were optimized and P10 showed satisfactory predicted bioactivity, demonstrating the feasibility to develop potent PI3Kγ inhibitors through this computational modeling and optimization.  相似文献   
93.
Doramapimod (BIRB-796) is widely recognized as one of the most potent and selective type II inhibitors of human p38α mitogen-activated protein kinase (MAPK); however, the understanding of its binding mechanism remains incomplete. Previous studies indicated high affinity of the ligand to a so-called allosteric pocket revealed only in the ‘out’ state of the DFG motif (i.e. Asp168-Phe169-Gly170) when Phe169 becomes fully exposed to the solvent. The possibility of alternative binding in the DFG-in state was hypothesized, but the molecular mechanism was not known. Methods of bioinformatics, docking and long-time scale classical and accelerated molecular dynamics have been applied to study the interaction of Doramapimod with the human p38α MAPK. It was shown that Doramapimod can bind to the protein even when the Phe169 is fully buried inside the allosteric pocket and the kinase activation loop is in the DFG-in state. Orientation of the inhibitor in such a complex is significantly different from that in the known crystallographic complex formed by the kinase in the DFG-out state; however, the Doramapimod’s binding is followed by the ligand-induced conformational changes, which finally improve accommodation of the inhibitor. Molecular modelling has confirmed that Doramapimod combines the features of type I and II inhibitors of p38α MAPK, i.e. can directly and indirectly compete with the ATP binding. It can be concluded that optimization of the initial binding in the DFG-in state and the final accommodation in the DFG-out state should be both considered at designing novel efficient type II inhibitors of MAPK and homologous proteins.

Communicated by Ramaswamy H. Sarma  相似文献   

94.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
95.
Heart failure with preserved ejection fraction (HFpEF) is a common clinical syndrome associated with high morbidity and mortality. Therapeutic options are limited due to a lack of knowledge of the pathology and its evolution. We investigated the cellular phenotype and Ca2+ handling in hearts recapitulating HFpEF criteria. HFpEF was induced in a portion of male Wistar rats four weeks after abdominal aortic banding. These animals had nearly normal ejection fraction and presented elevated blood pressure, lung congestion, concentric hypertrophy, increased LV mass, wall stiffness, impaired active relaxation and passive filling of the left ventricle, enlarged left atrium, and cardiomyocyte hypertrophy. Left ventricular cell contraction was stronger and the Ca2+ transient larger. Ca2+ cycling was modified with a RyR2 mediated Ca2+ leak from the sarcoplasmic reticulum and impaired Ca2+ extrusion through the Sodium/Calcium exchanger (NCX), which promoted an increase in diastolic Ca2+. The Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2a) and NCX protein levels were unchanged. The phospholamban (PLN) to SERCA2a ratio was augmented in favor of an inhibitory effect on the SERCA2a activity. Conversely, PLN phosphorylation at the calmodulin-dependent kinase II (CaMKII)-specific site (PLN-Thr17), which promotes SERCA2A activity, was increased as well, suggesting an adaptive compensation of Ca2+ cycling. Altogether our findings show that cardiac remodeling in hearts with a HFpEF status differs from that known for heart failure with reduced ejection fraction. These data also underscore the interdependence between systolic and diastolic “adaptations” of Ca2+ cycling with complex compensative interactions between Ca2+ handling partner and regulatory proteins.  相似文献   
96.
Heart failure with reduced ejection fraction (HFrEF) is a deadly and disabling disease. A key derangement contributing to impaired exercise performance in HFrEF is decreased nitric oxide (NO) bioavailability. Scientists recently discovered the inorganic nitrate pathway for increasing NO. This has advantages over organic nitrates and NO synthase production of NO. Small studies using beetroot juice as a source of inorganic nitrate demonstrate its power to improve exercise performance in HFrEF. A larger-scale trial is now underway to determine if inorganic nitrate may be a new arrow for physicians' quiver of HFrEF treatments.  相似文献   
97.
98.
Cell-penetrating peptides (CPPs) are used to internalize different cargoes, including DNA, into live mammalian and plant cells. Despite many cells being easily transfected with this approach, other cells are rather “difficult” or “hard to transfect,” including protist cells of the genus Leishmania. Based on our previous results in successfully internalizing proteins into Leishmania tarentolae cells, we used single CPPs and three different DNA-binding proteins to form protein-like complexes with plasmids covered with CPPs. We attempted magnetofection, electroporation, and transfection using a number of commercially available detergents. While complex formation with negatively charged DNA required substantially higher amounts of CPPs than those necessary for mostly neutral proteins, the cytotoxicity of the required amounts of CPPs and auxiliaries was thoroughly studied. We found that Leishmania cells were indeed susceptible to high concentrations of some CPPs and auxiliaries, although in a different manner compared with that for mammalian cells. The lack of successful transfections implies the necessity to accept certain general limitations regarding DNA internalization into difficult-to-transfect cells. Only electroporation allowed reproducible internalization of large and rigid plasmid DNA molecules through electrically disturbed extended membrane areas, known as permeable membrane macrodomains.  相似文献   
99.
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers.In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.  相似文献   
100.
本文旨在建立树鼩(Tupaia belangeri)小胶质细胞原代培养及纯化的方法,为利用新型实验动物树鼩进行相关研究工作提供实验材料。将新生树鼩大脑皮质机械分离,皮质组织块用胰蛋白酶消化后制成细胞悬液;培养9~10 d后,分别采用直立手拍法、温和胰酶消化法以及恒温振荡法分离纯化树鼩小胶质细胞,通过差速贴壁进一步纯化。荧光显微镜下,利用小胶质细胞的特异性标记物CD11b抗体进行鉴定。结果显示,小胶质细胞分离培养第3天时呈静息状态,表现为梭形、杆状、分支状等不规则形态。细胞免疫荧光CD11b呈阳性。不同纯化方法细胞免疫荧光并计数显示,直立手拍法所获得的细胞产量明显高于恒温振荡法(P 0.05),细胞阳性率( 96%)明显高于温和胰酶消化法( 90%,P 0.05)。直立手拍法可获得产量及纯度高的树鼩原代小胶质细胞。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号